Induction of adult-type nicotinic acetylcholine receptor gene expression in noninnervated regenerating muscle.

نویسندگان

  • D Goldman
  • B M Carlson
  • J Staple
چکیده

Expression of adult-type nicotinic acetylcholine receptors at the neuromuscular junction is thought to result from selective induction of their genes in endplate-associated nuclei due to local neurotrophic control. However, denervation studies indicate that endplate-specific expression can be maintained in the absence of the nerve. We investigated the role played by the basal lamina in this expression by assaying for the adult-type-specific epsilon RNA in noninnervated regenerating muscle. We found that this RNA is locally expressed beneath the old endplates after 10 days of regeneration. At earlier times epsilon RNA is also found in areas other than the endplate region. These results indicate that in adult muscle the basal lamina contains all the components necessary to direct nicotinic acetylcholine receptor gene expression to the endplate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Swimming Endurance Exercise on Cell Death and Nicotinic Acetylcholine Receptor Gene Expression in Brain of Rat: An Experimental Study of Alzheimer's Disease Model

Background and Objectives: Alzheimerchr('39')s disease (AD) is a neurodegenerative disease which is marked by impaired cholinergic function and decreased nicotinic acetylcholine receptor (nAChRs) density. nAChRs are important mediators of cholinergic signaling in modulation of learning and memory function. In Alzheimer hippocampus is particularly vulnerable to specific degenerative processes an...

متن کامل

Identification of a neuregulin and protein-tyrosine phosphatase response element in the nicotinic acetylcholine receptor « subunit gene: Regulatory role of an Ets transcription factor

At the neuromuscular synapse, innervation induces endplate-specific expression of adult-type nicotinic acetylcholine receptors by selective expression of their subunit-encoding genes (a2b«d) in endplate-associated myonuclei. These genes are specifically regulated by protein-tyrosine phosphatase (PTPase) activity. In addition, neureguliny acetylcholine-receptor-inducing activity, a nerve-derived...

متن کامل

A histone deacetylase 4/myogenin positive feedback loop coordinates denervation-dependent gene induction and suppression.

Muscle activity contributes to formation of the neuromuscular junction and affects muscle metabolism and contractile properties through regulated gene expression. However, the mechanisms coordinating these diverse activity-regulated processes remain poorly characterized. Recently, it was reported that histone deacetylase 4 (HDAC4) can mediate denervation-induced myogenin and nicotinic acetylcho...

متن کامل

Adaptation of nicotinic acetylcholine receptor, myogenin, and MRF4 gene expression to long-term muscle denervation

Muscle activity alters the expression of functionally distinct nicotinic acetylcholine receptors (nAChR) via regulation of subunit gene expression. Denervation increases the expression of all subunit genes and promotes the expression of embryonic-type (alpha 2 beta delta gamma) nAChRs, while electrical stimulation of denervated muscle prevents this induction. We have discovered that the denerva...

متن کامل

Role for calcium from the sarcoplasmic reticulum in coupling muscle activity to nicotinic acetylcholine receptor gene expression in rat.

Neurally evoked muscle electrical activity suppresses nicotinic acetylcholine receptor (nAChR) gene expression in extrajunctional domains of adult muscle fibers. It has been proposed that this regulation is mediated by calcium influx through voltage-dependent L-type calcium channels but bypasses the sarcoplasmic reticulum in chick and mouse C2C12 cells. Here we report that in rat muscle calcium...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 1991